Utility Analysis of Network Architectures for 3D Point Cloud Processing
Published in arXiv, 2019
Abstract. In this paper, we diagnose deep neural networks for 3D point cloud processing to explore utilities of different network architectures. We propose a number of hypotheses on the effects of specific network architectures on the representation capacity of DNNs. In order to prove the hypotheses, we design five metrics to diagnose various types of DNNs from the following perspectives, information discarding, information concentration, rotation robustness, adversarial robustness, and neighborhood inconsistency. We conduct comparative studies based on such metrics to verify the hypotheses. We further use the verified hypotheses to revise architectures of existing DNNs to improve their utilities. Experiments demonstrate the effectiveness of our method.
Recommended citation: Shen, W., Wei, Z., Huang, S., Zhang, B., & Zhang, Q.: Utility analysis of network architectures for 3d point cloud processing. arXiv preprint arXiv:1911.09053. (2019)